BT Development Mentor Program Archives » Manatees Dooo Eeeet!!! Rss Feed  
Moderators: alicefoeller Reply
 
 
of 74
 
 
2021-12-28 5:05 AM
in reply to: jmkizer

User image

Expert
1680
1000500100252525
Illinois
Subject: RE: Manatees Dooo Eeeet!!!
Originally posted by jmkizer

I do not see a new Mentor Program for 2022 -- at least not yet.  Please keep your eyes peeled.  I don't what us to be caught off-guard and be archived before we are ready!

Speaking of ready, do we want to do a JoGo to start off 2022?  Or maybe wait and start it mid-month?  Are are we over the whole JoGo idea?



I would be up for a JoGo Challenge


2021-12-28 9:12 AM
in reply to: mtnbikerchk

User image

Expert
2745
200050010010025
Subject: RE: Manatees Dooo Eeeet!!!
I struggle with both regular Gatorade and the endurance version.

I'm supposed to consider anything that carries calories, liquid, gu or solid. Since I've been struggling with emptying my stomach (it does empty, just not in the preferred way), the goal is what will make digestion easier, so I can keep putting calories and hydration in.

Heat is an issue for me. Even in the Summer, I'm in cooler temperatures, so I struggle in heat. I do use space heaters when I train indoors, to heat me adjust. My ideal race temperature is between 55F and 65F. I am a heavy sweater. I really pay if the temp is over 75 F.
I start my plan for IM Texas in two weeks. It includes long days on Saturday and Sunday, so the chemistry experiment will really start then.
2021-12-28 10:56 AM
in reply to: JBacarella

User image

Master
7551
500020005002525
Orlando
Subject: RE: Manatees Dooo Eeeet!!!

Originally posted by JBacarella I struggle with both regular Gatorade and the endurance version. I'm supposed to consider anything that carries calories, liquid, gu or solid. Since I've been struggling with emptying my stomach (it does empty, just not in the preferred way), the goal is what will make digestion easier, so I can keep putting calories and hydration in. Heat is an issue for me. Even in the Summer, I'm in cooler temperatures, so I struggle in heat. I do use space heaters when I train indoors, to heat me adjust. My ideal race temperature is between 55F and 65F. I am a heavy sweater. I really pay if the temp is over 75 F. I start my plan for IM Texas in two weeks. It includes long days on Saturday and Sunday, so the chemistry experiment will really start then.

Lol, emptying your stomach the non-preferred way is certainly a bold choice! I copied the below to help me remember what I should do in high heat races, though, heat doesn't affect me as much as it does a lot of other people.  There may be information in it that can help you.

The season of sizzle is upon us! Training and racing are hard enough, and when you add the component of heat and/or humidity, it can wreak havoc. How can you handle the heat and still race well? What works…and what doesn’t?

Remember that body water is your most effective means of dissipating heat. Here’s how it works: blood circulates to the muscles to bring fuel and at the same time picks up metabolic byproducts, one of which is heat produced through muscular contraction. Blood then circulates to the skin to offload the heat through several mechanisms, the most effective being evaporative cooling – a.k.a., sweating!

As you sweat, you essentially “evaporate” water from your blood through your skin and as your plasma volume drops, the body pulls water from other spaces to try to keep blood volume up. If you’re slack on your hydration, you compromise your blood volume and thus blood circulation to the muscles and skin. You also compromise the amount of water in your body for sweating and thus your body’s cooling mechanisms.

What Your Body Needs to Stay Hydrated

So now that we’ve established that hydration is the key to performing in the heat, let’s have a look at what else your body needs – besides water of course – to stay hydrated. Your small intestines are where 95% of nutrient and water absorption takes place. Physiologically, there are specific things the body needs to create a net water gradient in the small intestines so that it can absorb water.

THESE KEY THINGS ARE:

  • Glucose
  • Sodium
  • And on a smaller scale: potassium, magnesium, chloride, and calcium.

Why Does the Body Need the Above?

Sodium is absorbed into the cell by several mechanisms, but chief among them is by co-transport with glucose, sucrose and amino acids. This means that efficient sodium absorption is dependent on absorption of these organic solutes.

Absorbed sodium is rapidly exported from the cell via sodium pumps. When a lot of sodium is entering the cell, a lot of sodium is also pumped out of the cell, which establishes a high osmolality in the small intercellular spaces. Water diffuses from the small intestine into the body via the bloodstream in response to this osmotic gradient established by sodium.

Without glucose, the constant “flow” of sodium and water into the body becomes rate-limited (i.e. slows down as the body tries to find glucose to work with the sodium for the co-transport effect described above). This is why sports drinks that actually hydrate (e.g. don’t just sit in the stomach and cause sloshing/bloating/discomfort) contain a small amount of sugar (glucose and sucrose) as well as sodium for optimal absorption and hydration.

There is the notion of “overhydration” a.k.a. exercise associated hyponatremia. This notion is gaining traction due to blanket recommendations to drink before you become thirsty. Two key factors to consider here:

  1. It is critical to understand what you are drinking. You want to consume a fluid that meets the physiological needs of the body for hydration, not a calorie replacement fluid, which is what so many of the current sports drinks tend to be. A fluid that meets the physiological needs would be one that supplies some glucose, sodium, and other key co-transporters as described above, at no more than a 3-4% carbohydrate solution (3-4 grams of carbohydrate per 100ml).
  2. Everyone is an individual, thus fluid needs widely vary. Drinking to thirst is one way to start to monitor your fluid needs; basing your needs on body weight is another. Peer-reviewed science literature agrees that 8-12 ml/kg per hour of a physiological fluid will help maintain blood volume for effective circulation and subsequent delay in muscle fatigue.

Do You Need More Salt?

So does this mean you need salt tablets to replace sodium lost through sweat, as many athletes may be led to believe? No, you do not need salt tablets! Even as a “salty sweater”, your body has ample sodium stores, and you will consume plenty of sodium from the foods you are eating and (if you chose your hydration source wisely) drinking.

Salt tablets contribute more stress to the GI than most people realize. The chloride ion of sodium chloride (common salt), while both necessary for cellular function and also lost through sweat, is not lost at rates high enough to warrant high load replacement during exercise. The chloride ion interferes with what we call the membrane potential of the intestinal cells, allowing the spaces between the cells to “open up”, releasing endotoxins, causing an abnormal water flux and severe diarrhea. Moreover, when you ingest a high dose of sodium, you end up with a bit of reverse water flux; water goes to sodium so if you have a high concentration of sodium in the digestive tract, water will leach into the GI tract rather than be absorbed into the blood. This contributes to additional issues with gut sloshing and dehydration.

In a nutshell, you do not need salt tablets. What you do need is a “physiological” sports drink that supplies ~600mg sodium per 16-20oz, and to get your calories from real food (which, in this day and age, has plenty of added sodium).

Be aware, plain water does not hydrate! You need a bit of sodium and glucose to actually pull the water into the system. Plain water can cause a “volume” response – signaling your body to pee out more than you’ve taken in. Again, work with physiology and remember that there is no pure water in the body; body fluid is comprised of electrolytes, glucose, and water.

External Methods for Cooling

Besides enabling your body’s own cooling mechanism via hydration, you can also cool your body externally on a hot day. What is so critical about keeping cool? The main factor is lengthening the time it takes your body to reach its critical core temperature. One intrinsic mechanism to keep you from overheating is slowing down – we often recognize this as fatigue. There are several aspects to fatigue; central nervous system, peripheral, metabolic. All of these contribute to slowing down as a self-protecting measure. The one commonality is temperature. By reducing your rate of core temperature rise, you can reduce the signaling to the CNS the need to slow down; moreover, peripherally, you can reduce the denaturing of contractile proteins in the muscle (thus you can still generate power and speed). There are a few ways to manipulate the rate of core temperature rise. One, of course, is staying hydrated (and if you can ingest cold drinks, then do so)! The second aspect is doing a few things to “pre-cool”, effectively reducing your core temperature at the start of the race so you have a longer time to reach a critical core temperature (i.e., fatigue).

THREE WAYS TO COOL YOUR CORE

  1. Standing or swimming in cold water for 10-15 min right before race start. This method drops core temperature and skin temperature, reducing perceived thermal strain during subsequent exercise.
  2. Have an icy or slushy drink! Compared to cold water, icy/slushy fluid ingestion lowers pre-exercise core temperature more which increases time to exhaustion and allows a greater core temperature to be achieved at exhaustion.
  3. Wear a water perfused vest with circulating cool water. Don’t use an ice vest (ice on the skin is too cold, this will cause your blood vessels to constrict, forcing hot blood from the skin back to the core, and driving the core temperature up). This cooling method also maintains cerebral blood flow more effectively.

During the race, in an ideal situation you’d be slurping down ice cold 3-4% glucose+sucrose+sodium hydration drinks and sucking on cold popsicles throughout the race. But many times the ideal isn’t practical. Anything you can ingest that is cold will help reduce the rate of core temperature rise. Grab some ice water from an aid station and drink it down; even suck on the ice. But do not pour ice water on your head! The ice water is too cold and the head has a lot of blood vessels. The cold of the ice will constrict those vessels, sending hot blood back to the core as described above. Cool water is fine. It’s an issue of temperature gradients; cool water will help pull heat away as if you were sweating buckets, ice water will force heat back into your body.

Cool water on the forearms is also a great heat off-loader, and using UV-protectant armskins to prevent sunburn and to hold cool water against the forearm will help keep core temperature rise at a lower rate. Above all else, keep drinking! Start early and drink often. Think “sip sip, nibble nibble”. Eat food and drink fluid that is as cold as you can get on course, but don’t hold it against the skin.

If you follow these guidelines, you’ll find that your summer races will be hot but doable. Race well, race hard, and have fun!

 

2021-12-28 11:19 AM
in reply to: amd723

User image

Champion
14646
500050002000200050010025
Silver member
Subject: RE: Manatees Dooo Eeeet!!!
Originally posted by amd723

Originally posted by JBacarella I struggle with both regular Gatorade and the endurance version. I'm supposed to consider anything that carries calories, liquid, gu or solid. Since I've been struggling with emptying my stomach (it does empty, just not in the preferred way), the goal is what will make digestion easier, so I can keep putting calories and hydration in. Heat is an issue for me. Even in the Summer, I'm in cooler temperatures, so I struggle in heat. I do use space heaters when I train indoors, to heat me adjust. My ideal race temperature is between 55F and 65F. I am a heavy sweater. I really pay if the temp is over 75 F. I start my plan for IM Texas in two weeks. It includes long days on Saturday and Sunday, so the chemistry experiment will really start then.

Lol, emptying your stomach the non-preferred way is certainly a bold choice! I copied the below to help me remember what I should do in high heat races, though, heat doesn't affect me as much as it does a lot of other people.  There may be information in it that can help you.

The season of sizzle is upon us! Training and racing are hard enough, and when you add the component of heat and/or humidity, it can wreak havoc. How can you handle the heat and still race well? What works…and what doesn’t?

Remember that body water is your most effective means of dissipating heat. Here’s how it works: blood circulates to the muscles to bring fuel and at the same time picks up metabolic byproducts, one of which is heat produced through muscular contraction. Blood then circulates to the skin to offload the heat through several mechanisms, the most effective being evaporative cooling – a.k.a., sweating!

As you sweat, you essentially “evaporate” water from your blood through your skin and as your plasma volume drops, the body pulls water from other spaces to try to keep blood volume up. If you’re slack on your hydration, you compromise your blood volume and thus blood circulation to the muscles and skin. You also compromise the amount of water in your body for sweating and thus your body’s cooling mechanisms.

What Your Body Needs to Stay Hydrated

So now that we’ve established that hydration is the key to performing in the heat, let’s have a look at what else your body needs – besides water of course – to stay hydrated. Your small intestines are where 95% of nutrient and water absorption takes place. Physiologically, there are specific things the body needs to create a net water gradient in the small intestines so that it can absorb water.

THESE KEY THINGS ARE:

  • Glucose
  • Sodium
  • And on a smaller scale: potassium, magnesium, chloride, and calcium.

Why Does the Body Need the Above?

Sodium is absorbed into the cell by several mechanisms, but chief among them is by co-transport with glucose, sucrose and amino acids. This means that efficient sodium absorption is dependent on absorption of these organic solutes.

Absorbed sodium is rapidly exported from the cell via sodium pumps. When a lot of sodium is entering the cell, a lot of sodium is also pumped out of the cell, which establishes a high osmolality in the small intercellular spaces. Water diffuses from the small intestine into the body via the bloodstream in response to this osmotic gradient established by sodium.

Without glucose, the constant “flow” of sodium and water into the body becomes rate-limited (i.e. slows down as the body tries to find glucose to work with the sodium for the co-transport effect described above). This is why sports drinks that actually hydrate (e.g. don’t just sit in the stomach and cause sloshing/bloating/discomfort) contain a small amount of sugar (glucose and sucrose) as well as sodium for optimal absorption and hydration.

There is the notion of “overhydration” a.k.a. exercise associated hyponatremia. This notion is gaining traction due to blanket recommendations to drink before you become thirsty. Two key factors to consider here:

  1. It is critical to understand what you are drinking. You want to consume a fluid that meets the physiological needs of the body for hydration, not a calorie replacement fluid, which is what so many of the current sports drinks tend to be. A fluid that meets the physiological needs would be one that supplies some glucose, sodium, and other key co-transporters as described above, at no more than a 3-4% carbohydrate solution (3-4 grams of carbohydrate per 100ml).
  2. Everyone is an individual, thus fluid needs widely vary. Drinking to thirst is one way to start to monitor your fluid needs; basing your needs on body weight is another. Peer-reviewed science literature agrees that 8-12 ml/kg per hour of a physiological fluid will help maintain blood volume for effective circulation and subsequent delay in muscle fatigue.

Do You Need More Salt?

So does this mean you need salt tablets to replace sodium lost through sweat, as many athletes may be led to believe? No, you do not need salt tablets! Even as a “salty sweater”, your body has ample sodium stores, and you will consume plenty of sodium from the foods you are eating and (if you chose your hydration source wisely) drinking.

Salt tablets contribute more stress to the GI than most people realize. The chloride ion of sodium chloride (common salt), while both necessary for cellular function and also lost through sweat, is not lost at rates high enough to warrant high load replacement during exercise. The chloride ion interferes with what we call the membrane potential of the intestinal cells, allowing the spaces between the cells to “open up”, releasing endotoxins, causing an abnormal water flux and severe diarrhea. Moreover, when you ingest a high dose of sodium, you end up with a bit of reverse water flux; water goes to sodium so if you have a high concentration of sodium in the digestive tract, water will leach into the GI tract rather than be absorbed into the blood. This contributes to additional issues with gut sloshing and dehydration.

In a nutshell, you do not need salt tablets. What you do need is a “physiological” sports drink that supplies ~600mg sodium per 16-20oz, and to get your calories from real food (which, in this day and age, has plenty of added sodium).

Be aware, plain water does not hydrate! You need a bit of sodium and glucose to actually pull the water into the system. Plain water can cause a “volume” response – signaling your body to pee out more than you’ve taken in. Again, work with physiology and remember that there is no pure water in the body; body fluid is comprised of electrolytes, glucose, and water.

External Methods for Cooling

Besides enabling your body’s own cooling mechanism via hydration, you can also cool your body externally on a hot day. What is so critical about keeping cool? The main factor is lengthening the time it takes your body to reach its critical core temperature. One intrinsic mechanism to keep you from overheating is slowing down – we often recognize this as fatigue. There are several aspects to fatigue; central nervous system, peripheral, metabolic. All of these contribute to slowing down as a self-protecting measure. The one commonality is temperature. By reducing your rate of core temperature rise, you can reduce the signaling to the CNS the need to slow down; moreover, peripherally, you can reduce the denaturing of contractile proteins in the muscle (thus you can still generate power and speed). There are a few ways to manipulate the rate of core temperature rise. One, of course, is staying hydrated (and if you can ingest cold drinks, then do so)! The second aspect is doing a few things to “pre-cool”, effectively reducing your core temperature at the start of the race so you have a longer time to reach a critical core temperature (i.e., fatigue).

THREE WAYS TO COOL YOUR CORE

  1. Standing or swimming in cold water for 10-15 min right before race start. This method drops core temperature and skin temperature, reducing perceived thermal strain during subsequent exercise.
  2. Have an icy or slushy drink! Compared to cold water, icy/slushy fluid ingestion lowers pre-exercise core temperature more which increases time to exhaustion and allows a greater core temperature to be achieved at exhaustion.
  3. Wear a water perfused vest with circulating cool water. Don’t use an ice vest (ice on the skin is too cold, this will cause your blood vessels to constrict, forcing hot blood from the skin back to the core, and driving the core temperature up). This cooling method also maintains cerebral blood flow more effectively.

During the race, in an ideal situation you’d be slurping down ice cold 3-4% glucose+sucrose+sodium hydration drinks and sucking on cold popsicles throughout the race. But many times the ideal isn’t practical. Anything you can ingest that is cold will help reduce the rate of core temperature rise. Grab some ice water from an aid station and drink it down; even suck on the ice. But do not pour ice water on your head! The ice water is too cold and the head has a lot of blood vessels. The cold of the ice will constrict those vessels, sending hot blood back to the core as described above. Cool water is fine. It’s an issue of temperature gradients; cool water will help pull heat away as if you were sweating buckets, ice water will force heat back into your body.

Cool water on the forearms is also a great heat off-loader, and using UV-protectant armskins to prevent sunburn and to hold cool water against the forearm will help keep core temperature rise at a lower rate. Above all else, keep drinking! Start early and drink often. Think “sip sip, nibble nibble”. Eat food and drink fluid that is as cold as you can get on course, but don’t hold it against the skin.

If you follow these guidelines, you’ll find that your summer races will be hot but doable. Race well, race hard, and have fun!

 

That is a lot of good info, Ann Marie.
2021-12-28 12:54 PM
in reply to: ceilidh

User image

Master
7551
500020005002525
Orlando
Subject: RE: Manatees Dooo Eeeet!!!

Originally posted by ceilidh
Originally posted by amd723

Originally posted by JBacarella I struggle with both regular Gatorade and the endurance version. I'm supposed to consider anything that carries calories, liquid, gu or solid. Since I've been struggling with emptying my stomach (it does empty, just not in the preferred way), the goal is what will make digestion easier, so I can keep putting calories and hydration in. Heat is an issue for me. Even in the Summer, I'm in cooler temperatures, so I struggle in heat. I do use space heaters when I train indoors, to heat me adjust. My ideal race temperature is between 55F and 65F. I am a heavy sweater. I really pay if the temp is over 75 F. I start my plan for IM Texas in two weeks. It includes long days on Saturday and Sunday, so the chemistry experiment will really start then.

Lol, emptying your stomach the non-preferred way is certainly a bold choice! I copied the below to help me remember what I should do in high heat races, though, heat doesn't affect me as much as it does a lot of other people.  There may be information in it that can help you.

The season of sizzle is upon us! Training and racing are hard enough, and when you add the component of heat and/or humidity, it can wreak havoc. How can you handle the heat and still race well? What works…and what doesn’t?

Remember that body water is your most effective means of dissipating heat. Here’s how it works: blood circulates to the muscles to bring fuel and at the same time picks up metabolic byproducts, one of which is heat produced through muscular contraction. Blood then circulates to the skin to offload the heat through several mechanisms, the most effective being evaporative cooling – a.k.a., sweating!

As you sweat, you essentially “evaporate” water from your blood through your skin and as your plasma volume drops, the body pulls water from other spaces to try to keep blood volume up. If you’re slack on your hydration, you compromise your blood volume and thus blood circulation to the muscles and skin. You also compromise the amount of water in your body for sweating and thus your body’s cooling mechanisms.

What Your Body Needs to Stay Hydrated

So now that we’ve established that hydration is the key to performing in the heat, let’s have a look at what else your body needs – besides water of course – to stay hydrated. Your small intestines are where 95% of nutrient and water absorption takes place. Physiologically, there are specific things the body needs to create a net water gradient in the small intestines so that it can absorb water.

THESE KEY THINGS ARE:

  • Glucose
  • Sodium
  • And on a smaller scale: potassium, magnesium, chloride, and calcium.

Why Does the Body Need the Above?

Sodium is absorbed into the cell by several mechanisms, but chief among them is by co-transport with glucose, sucrose and amino acids. This means that efficient sodium absorption is dependent on absorption of these organic solutes.

Absorbed sodium is rapidly exported from the cell via sodium pumps. When a lot of sodium is entering the cell, a lot of sodium is also pumped out of the cell, which establishes a high osmolality in the small intercellular spaces. Water diffuses from the small intestine into the body via the bloodstream in response to this osmotic gradient established by sodium.

Without glucose, the constant “flow” of sodium and water into the body becomes rate-limited (i.e. slows down as the body tries to find glucose to work with the sodium for the co-transport effect described above). This is why sports drinks that actually hydrate (e.g. don’t just sit in the stomach and cause sloshing/bloating/discomfort) contain a small amount of sugar (glucose and sucrose) as well as sodium for optimal absorption and hydration.

There is the notion of “overhydration” a.k.a. exercise associated hyponatremia. This notion is gaining traction due to blanket recommendations to drink before you become thirsty. Two key factors to consider here:

  1. It is critical to understand what you are drinking. You want to consume a fluid that meets the physiological needs of the body for hydration, not a calorie replacement fluid, which is what so many of the current sports drinks tend to be. A fluid that meets the physiological needs would be one that supplies some glucose, sodium, and other key co-transporters as described above, at no more than a 3-4% carbohydrate solution (3-4 grams of carbohydrate per 100ml).
  2. Everyone is an individual, thus fluid needs widely vary. Drinking to thirst is one way to start to monitor your fluid needs; basing your needs on body weight is another. Peer-reviewed science literature agrees that 8-12 ml/kg per hour of a physiological fluid will help maintain blood volume for effective circulation and subsequent delay in muscle fatigue.

Do You Need More Salt?

So does this mean you need salt tablets to replace sodium lost through sweat, as many athletes may be led to believe? No, you do not need salt tablets! Even as a “salty sweater”, your body has ample sodium stores, and you will consume plenty of sodium from the foods you are eating and (if you chose your hydration source wisely) drinking.

Salt tablets contribute more stress to the GI than most people realize. The chloride ion of sodium chloride (common salt), while both necessary for cellular function and also lost through sweat, is not lost at rates high enough to warrant high load replacement during exercise. The chloride ion interferes with what we call the membrane potential of the intestinal cells, allowing the spaces between the cells to “open up”, releasing endotoxins, causing an abnormal water flux and severe diarrhea. Moreover, when you ingest a high dose of sodium, you end up with a bit of reverse water flux; water goes to sodium so if you have a high concentration of sodium in the digestive tract, water will leach into the GI tract rather than be absorbed into the blood. This contributes to additional issues with gut sloshing and dehydration.

In a nutshell, you do not need salt tablets. What you do need is a “physiological” sports drink that supplies ~600mg sodium per 16-20oz, and to get your calories from real food (which, in this day and age, has plenty of added sodium).

Be aware, plain water does not hydrate! You need a bit of sodium and glucose to actually pull the water into the system. Plain water can cause a “volume” response – signaling your body to pee out more than you’ve taken in. Again, work with physiology and remember that there is no pure water in the body; body fluid is comprised of electrolytes, glucose, and water.

External Methods for Cooling

Besides enabling your body’s own cooling mechanism via hydration, you can also cool your body externally on a hot day. What is so critical about keeping cool? The main factor is lengthening the time it takes your body to reach its critical core temperature. One intrinsic mechanism to keep you from overheating is slowing down – we often recognize this as fatigue. There are several aspects to fatigue; central nervous system, peripheral, metabolic. All of these contribute to slowing down as a self-protecting measure. The one commonality is temperature. By reducing your rate of core temperature rise, you can reduce the signaling to the CNS the need to slow down; moreover, peripherally, you can reduce the denaturing of contractile proteins in the muscle (thus you can still generate power and speed). There are a few ways to manipulate the rate of core temperature rise. One, of course, is staying hydrated (and if you can ingest cold drinks, then do so)! The second aspect is doing a few things to “pre-cool”, effectively reducing your core temperature at the start of the race so you have a longer time to reach a critical core temperature (i.e., fatigue).

THREE WAYS TO COOL YOUR CORE

  1. Standing or swimming in cold water for 10-15 min right before race start. This method drops core temperature and skin temperature, reducing perceived thermal strain during subsequent exercise.
  2. Have an icy or slushy drink! Compared to cold water, icy/slushy fluid ingestion lowers pre-exercise core temperature more which increases time to exhaustion and allows a greater core temperature to be achieved at exhaustion.
  3. Wear a water perfused vest with circulating cool water. Don’t use an ice vest (ice on the skin is too cold, this will cause your blood vessels to constrict, forcing hot blood from the skin back to the core, and driving the core temperature up). This cooling method also maintains cerebral blood flow more effectively.

During the race, in an ideal situation you’d be slurping down ice cold 3-4% glucose+sucrose+sodium hydration drinks and sucking on cold popsicles throughout the race. But many times the ideal isn’t practical. Anything you can ingest that is cold will help reduce the rate of core temperature rise. Grab some ice water from an aid station and drink it down; even suck on the ice. But do not pour ice water on your head! The ice water is too cold and the head has a lot of blood vessels. The cold of the ice will constrict those vessels, sending hot blood back to the core as described above. Cool water is fine. It’s an issue of temperature gradients; cool water will help pull heat away as if you were sweating buckets, ice water will force heat back into your body.

Cool water on the forearms is also a great heat off-loader, and using UV-protectant armskins to prevent sunburn and to hold cool water against the forearm will help keep core temperature rise at a lower rate. Above all else, keep drinking! Start early and drink often. Think “sip sip, nibble nibble”. Eat food and drink fluid that is as cold as you can get on course, but don’t hold it against the skin.

If you follow these guidelines, you’ll find that your summer races will be hot but doable. Race well, race hard, and have fun!

 

That is a lot of good info, Ann Marie.

Helps explain why the minute I used base salts (for the first time ever) during IM Choo I got nauseous! And why I shouldn't have put ice under my hat or held it in my hands.

2021-12-28 3:46 PM
in reply to: amd723

User image

Master
4096
20002000252525
Toronto
Subject: RE: Manatees Dooo Eeeet!!!

Hi Manatees! How's the end of the year going? Lots of good discussion on in-race fuelling - though i have to say hot weather tips are a bit off my current experience up here in the great white north! hahaha! 

I am still training for my early March half marathon and it's going well. I am following a plan from Another Mother Runner and quite enjoying. It's a lot more running that i've done sine probably 2019. So that's something. I am not sure if i'll be fast but i'll be ready that's for sure! 

I am also chatting with a couple of friends about doing a 'polar bear dip' in honour of our friend who passed away this year in November (so hard - she was 41and had stage 4 colon cancer). I have never ever wanted to do one but this friend did one a couple of years ago and it would be an amazing way to honour her. Has anyone ever done one before? Any tips?  (Ann-Marie, your Florida 'cold' does not count!



2021-12-28 5:11 PM
in reply to: juniperjen

User image

Master
7551
500020005002525
Orlando
Subject: RE: Manatees Dooo Eeeet!!!

Originally posted by juniperjen

Hi Manatees! How's the end of the year going? Lots of good discussion on in-race fuelling - though i have to say hot weather tips are a bit off my current experience up here in the great white north! hahaha! 

I am still training for my early March half marathon and it's going well. I am following a plan from Another Mother Runner and quite enjoying. It's a lot more running that i've done sine probably 2019. So that's something. I am not sure if i'll be fast but i'll be ready that's for sure! 

I am also chatting with a couple of friends about doing a 'polar bear dip' in honour of our friend who passed away this year in November (so hard - she was 41and had stage 4 colon cancer). I have never ever wanted to do one but this friend did one a couple of years ago and it would be an amazing way to honour her. Has anyone ever done one before? Any tips?  (Ann-Marie, your Florida 'cold' does not count!

hahaha! The closest I've gotten was an aborted attempt to swim lake logan!

2021-12-29 5:39 PM
in reply to: juniperjen

User image

Champion
14646
500050002000200050010025
Silver member
Subject: RE: Manatees Dooo Eeeet!!!
Originally posted by juniperjen

Hi Manatees! How's the end of the year going? Lots of good discussion on in-race fuelling - though i have to say hot weather tips are a bit off my current experience up here in the great white north! hahaha! 

I am still training for my early March half marathon and it's going well. I am following a plan from Another Mother Runner and quite enjoying. It's a lot more running that i've done sine probably 2019. So that's something. I am not sure if i'll be fast but i'll be ready that's for sure! 

I am also chatting with a couple of friends about doing a 'polar bear dip' in honour of our friend who passed away this year in November (so hard - she was 41and had stage 4 colon cancer). I have never ever wanted to do one but this friend did one a couple of years ago and it would be an amazing way to honour her. Has anyone ever done one before? Any tips?  (Ann-Marie, your Florida 'cold' does not count!

i used to do one each year. They are more fun thannyoi would think. If you have any aches or pains, thru go away fir the day.
2021-12-29 5:40 PM
in reply to: amd723

User image

Champion
14646
500050002000200050010025
Silver member
Subject: RE: Manatees Dooo Eeeet!!!
Originally posted by amd723

Originally posted by juniperjen

Hi Manatees! How's the end of the year going? Lots of good discussion on in-race fuelling - though i have to say hot weather tips are a bit off my current experience up here in the great white north! hahaha! 

I am still training for my early March half marathon and it's going well. I am following a plan from Another Mother Runner and quite enjoying. It's a lot more running that i've done sine probably 2019. So that's something. I am not sure if i'll be fast but i'll be ready that's for sure! 

I am also chatting with a couple of friends about doing a 'polar bear dip' in honour of our friend who passed away this year in November (so hard - she was 41and had stage 4 colon cancer). I have never ever wanted to do one but this friend did one a couple of years ago and it would be an amazing way to honour her. Has anyone ever done one before? Any tips?  (Ann-Marie, your Florida 'cold' does not count!

hahaha! The closest I've gotten was an aborted attempt to swim lake logan!

that was pretty cold.
2021-12-30 5:13 PM
in reply to: ceilidh

User image

Master
9444
50002000200010010010010025
Raleigh, NC area
Subject: RE: Manatees Dooo Eeeet!!!

I started a 2022 thread in the Mentor Program Staging Area in case Alice archives us. I don't want us to be SOL.  We'll see what happens on Saturday!

2021-12-31 10:24 AM
in reply to: jmkizer

User image

Master
9444
50002000200010010010010025
Raleigh, NC area
Subject: RE: Manatees Dooo Eeeet!!!

Happy New Year's Eve!



2021-12-31 1:11 PM
in reply to: 0

User image

Master
9444
50002000200010010010010025
Raleigh, NC area
Subject: RE: Manatees Dooo Eeeet!!!

The 2022 thread is here. It looks like this one will be archived today or tomorrow.



Edited by jmkizer 2021-12-31 1:11 PM
New Thread
BT Development Mentor Program Archives » Manatees Dooo Eeeet!!! Rss Feed  
 
 
of 74